Skip to main content

IOT Coverage Mapping

This page has not been fully updated to represent the latest state of the Helium Network following the migration to Solana on April 18, 2023.

The Mappers Coverage map is a crowd-sourced effort to build a true-signal coverage map of the Helium IOT Network across the globe. By mapping real-world coverage, network users can understand where sensor deployments are likely to have success connecting to the Helium Network.

Coverage mapping should only be done from ground level, or slightly above it. We would like the map to indicate the expected coverage a standard sensor device would experience. If you want to fly a GPS tracker on a balloon or aircraft, please do not contribute this data to the coverage map.

Be sure to check out the ongoing conversation in the dedicated #mappers-iot channel on the Helium Discord Server.

Mapping Projects

Helium Mappers

Helium Mappers lets you see the areas that have been explored by participants in the coverage mapping project. The map also shows the Helium Hotspots that have provided coverage to these areas. Helium Mappers uses the H3 hexagon tiles to aggregate survey results and provided statistics.

View Mappers data at

Helium Cargo

Cargo is an evaluation tool for LoRaWAN GPS tracking devices. It shows the current location of these devices, along with the coverage of the network as an H3 hex grid. While Helium Mappers shows an aggregate view of the network coverage, Cargo can display specific mapper devices by name, and their most-recent position reports.

View GPS trackers on Cargo at

Coverage Map is a third party tool that draws heatmaps for LoRaWAN networks. This tool has the ability to show raw survey results for devices and Hotspots. It aggregates coverage measurements into a heatmap, radar plots and alpha shapes. View Helium's heatmap at

Mappers Visualization

From within the Mappers tool, clicking on a green hexagon will allow you to get more information about the coverage available in that region.

The Mapper Website shown on desktop.
  • H3 Index: The funny looking number like 89283082853ffff is the unique h3 index of the hexagon on the map. In other words, it's the hex’s name. H3 is a system of managing global datasets, and is pervasive throughout different Helium protocols.
  • RSSI: “Received Signal Strength Indicator” is a measure of the power present in a received radio signal. This number is computed by the hotspot when it hears the signal from a mapper. The higher the signal (less negative), the ‘stronger’ it is considered.
  • SNR: “Signal to Noise” measures the ratio of received power to background power in the received signal. Like the RSSI, it is also computed by the hotspot when it hears signal from the mapper. A higher ratio represents a clear signal whereas a negative number in this field represents a noisy signal.
  • Redundancy: The total count of hotspots that heard a mapper from within this hex. This metric is helpful in understanding the resilience of the network in a given area.
  • Distance: This is the approximate distance of the mapper from the hotspot that heard it.

Mappers Newsletter

Join the Mappers newsletter to stay up to date on new and upcoming features.

Frequently Asked Questions

How does Mappers work?

Participants use low cost LoRaWAN devices to survey the real-world network created by Helium. Many contributors bring their mapper with them when they walk, hike, bike, drive or even boat! They’re small and fit well in a pocket or on a car dash. Some have set up their mappers so they’re contributing to the coverage map every time they take a drive.

In order to place a mark on the map, the mapper device sends out a signal with a GPS location encoded. If a Helium Hotspot ‘hears’ that signal, data is passed through the internet and recorded in the Mappers database. The Mappers database uses the GPS information from the Mapper to ‘light up’ the hex on the map.

Why should I contribute to Mappers?

There are a variety of ways that Mapping is valuable to both Hotspot owners and network users. For Hotspot owners, the collected data helps to visualize the coverage provided by all Helium Hotspots - identifying areas where coverage is lacking or even where Hotspot placements could be made that would participate in Proof of Coverage with other Hotspots. A marked hex on the map indicates that uplink signals from registered Helium LoRaWAN sensors have been proven to be “heard” by the Helium network somewhere within that hex shaped area.

For network users, the map proves the real-world coverage that Hotspots provide. This is like looking at the Verizon or T-Mobile map when evaluating phone plans, but for business users. This real world evidence at the scale and resolution offered by our map gives prospective network users the information they need to make decisions about their deployments. As an example, this map is what someone like Lime scooters would look to before they sign a contract.

In short, a robust map means high priced customers, which means adoption, which means the network grows and the token value increases.

Do I earn rewards for contributing?

No, coverage mapping is entirely voluntary. To participate in mapping, you will need to spend Data Credits to pay for the data transfer that your mapper uses. HNT can be converted to DC to fund device data transfer or DC can be purchased directly through the Data Credit.

Mapping does not make a Hotspot earn more IOT through Proof of Coverage. The real value is to prove the network, drive adoption, and increase the purchase of Data Credits by commercial users.

If the Hotspots that you are mapping are your own, those Data Credits are paid back to your Hotspots in the form of HNT. Hotspots earn HNT for data packets they transfer, for mapping or otherwise.

How can I use Mappers for my own Hotspot deployments?

  • Find new locations for Hotspots.
  • Get real-world information about how far your Hotspot reaches.
  • Learn RF data analytics in an interactive way.

How can I use Mappers for my own sensor deployments?

Take a mapping device to the area where you want to deploy sensors and watch to see if it is picked up by a Hotspot in the hex where you want to deploy a sensor. If it’s picked up by only one Hotspot, decide if you want to deploy an additional Hotspot in that area for sensor connection redundancy. Look at existing mapped areas for confirmation that your sensors can be deployed in that area and how many Hotspot can pick them up. It only takes one Hotspot to receive and transmit data through the internet, but the redundancy offered by the Helium Network helps to ensure that your data is received.